Application of Neural Network in Trajectory Planning of the Entry Vehicle for Variable Targets
نویسندگان
چکیده
A method for onboard generation of entry trajectory for variable targets is discussed. Conventional trajectory planning algorithms can only be used for the fixed terminal conditions without considering the variable targets. In case the vehicle needs to alert the entry trajectory due to damage or effectors failure, the entry guidance system must real-time design a feasible entry trajectory according to another feasible landing site from current flight conditions. The conventional approaches must be augmented to provide the real-time redesign capability for variable targets, and the redesign trajectory would also satisfy all path constraints and altered terminal conditions. This paper makes use of the neural network as a major controller to overcome this problem. The redesign trajectory problems and control parameter generations online problems can be transformed into the neural network offline training problem, given the initial conditions and the selected terminal conditions. Numerical simulations with a reusable launch vehicle model for various terminal conditions are presented to demonstrate the capability and effectiveness of the approach.
منابع مشابه
Optimal Trajectory Study of a Small Size Waverider and Wing-Body Reentry Vehicle at Suborbital Entry Speed of Approximately 4 km/s with Dynamic Pressure and Heat Rate Constraint
A numerical trajectory optimization study of two types of lifting-entry reentry vehicle has been presented at low suborbital speed of 4.113 km/s and -15 degree entry angle. These orbital speeds are typical of medium range ballistic missile with ballistic range of approximately 2000 km at optimum burnout angle of approximately 41 degree for maximum ballistic range. A lifting reentry greatly enha...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملStability investigation of hydraulic interconnected suspension system of a vehicle with a quaternion neural network controller
Using hydraulic interconnected suspension (HIS) system to improve the stability of the vehicles is a matter of recent interest of many scholars. In this paper, application of this kind of suspension system and its impact on the stability of the vehicle are studied. The governing dynamic relations of the system are presented, using free body diagram, Newton-Euler motion equations, and relations ...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کامل